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Abstract
A simple model has been investigated to elucidate the mean squared
displacement (MSD) of probe molecules in cross-linked polymer gels. In the
model, we assume that numerous cavities distribute in the inhomogeneous
interior of a gel, and probe molecules are confined within these cavities. The
individual probe molecules trapped in a gel are treated as Brownian particles
confined to a spherical harmonic potential. The harmonic potential is chosen
to model the effective potential experienced by the probe particle in the cavity
of a gel. Each field strength is corresponding to the characteristic of one type
of effective cavity. Since the statistical distribution of different effective cavity
sizes is unknown, several distribution functions are examined. Meanwhile, the
calculated averaged MSDs are compared to the experimental data by Nisato
et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the
MSD are sensitive to the shape of the distribution function. For low cross-linked
gels, the best fit is obtained when the interior cavities of a gel follow a bimodal
distribution. Such a result may be attributed to the presence of at least two
distinct classes of cavity in gels. For high cross-linked gels, the cavities in the
gel can be depicted by a single-modal uniform distribution function, suggesting
that the range of cavity sizes becomes smaller. These results manifest the voids
inside a gel, and the shape of distribution functions may provide the insight into
the inhomogeneous interior of a gel.

1. Introduction

Polymer gels are one of the most studied materials because of their unique properties and
enormous industrial applications [1]. Recently, Nisato and co-workers devised a tracer particle
method to explore the interior of a cross-linked gel [2]. In their experiment, charged colloidal
particles, as probes, were introduced into like-charged polyelectrolyte gels. A dynamical
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light scattering experiment was conducted to characterize the time-dependent mean squared
displacement (MSD) of the probes in a gel. Such a design prevents the physical adsorption
of colloidal particles onto a cross-linked gel, and enables the colloidal particles to probe the
interior of a gel.

In the experiment by Nisato and co-workers, they found that the probe molecules are
essentially confined in gels, and the dynamics of probe molecules is quite sensitive to the
cross-linking ratio of the gel. They found that the MSD of probe molecules increases first
and reaches a plateau after a long enough time. The plateau indicates that probe molecules are
trapped locally in a gel, possibly within some cavities. As the cross-linking ratio is increased,
the MSD approaches the plateau at a shorter time, and the magnitude of the plateau becomes
smaller. These results suggest that at a higher cross-linking ratio, the confinement inside a gel
becomes even more significant.

In addition to the above-mentioned dynamical scattering experiment, Yamane and co-
workers have carried out a different experiment to measure the dynamics of small amino acids,
as probe molecules, in a cross-linked polymer gel by using the NMR method [3]. They found
that the measured diffusion coefficients are sensitive to the timescale. For short diffusion time,
the diffusion coefficient consists of two major components due to non-uniform network sizes
(i.e. cavity sizes). Note that such observation is quite similar to the finding of the two types
of cavity size present in silica gels and aluminosilicate gels [4, 5]. For long diffusion time,
the diffusion coefficient displays only one component. They argued that the single diffusion
coefficient is due to averaging over all network sizes. Furthermore, the diffusion lengths
obtained from the NMR data are found at the lengthscale of µm between the mesh size (network
size in nm) and the size of a swollen gel (a few hundreds of µm). Their results provide evidence
for the inhomogeneous nature of a gel, and the measured diffusion lengths may link with the
size of cavities (or voids) in gels.

To better understand the inhomogeneous interior of gels, Ngai and co-workers have
employed the dynamical light scattering method for photo-cross-linkable gels [6, 7]. After
a photocycloaddition reaction is induced, the semidilute polymer solution is transformed into
polymer gels. By increasing the cross-linking density of gels, the scattering intensity increases.
Such a result contradicts the traditional picture that the gel becomes more uniform at greater
cross-linking densities, and the scattering intensity of a perfect ‘uniform’ gel should totally
diminish due to cancellation of signals isotropically. Since the mesh size (compared to the
semidilute solution) is not changed significantly during gel formation, an increase of the
scattering intensity is attributed to the formation of large voids in gels, with size greater than
the mesh size but smaller than the total dimension of a gel. This result is consistent with the
NMR experiment by Yamane et al [3].

As pointed out by Wu [8], the origin of the inhomogeneous gel interior arises from the
fact that the cross-linking reaction is a diffusion control process during gel formation. The
random nature of the cross-linking reaction results in an inhomogeneous monomer density
distribution, with various cavity sizes. As a result, the spatial distribution of cavities can be
quite random, and the scattering signals are enhanced. These findings may change the way to
understand polymer gels. The mesh size, the average length between neighboring cross-linked
sites, widely used to characterize the properties of gels, is only useful at the local lengthscale,
but it may not be sufficient to detail the interior structure of gels.

In this work, we investigate a simple model to elucidate the dynamics of a probe molecule
in cross-linked gels. This model is an extension of our previous work for macromolecules
confined to harmonic potentials [9]. Here the harmonic potential is chosen to depict the
effective interaction potential experienced by the probe particle in a cavity of cross-linked gels.
Since the gel contains water and dangling branches, we assume that the colloidal particles
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undergo Brownian motion. Namely, the system is simplified to a Brownian particle in a
harmonic potential. Each force constant (or field strength) of harmonic potential represents
one type of cavity. Since the size of cavities in a gel may vary widely, we examine several
possible distribution functions, with the aim of finding an appropriate distribution to model
different effective cavity (or void) sizes.

2. Model

2.1. Brownian particles in harmonic potentials

The starting point of this work is to treat the probe molecule trapped in the cavity of a
gel as a Brownian particle confined to a spherical harmonic potential, a classical model in
literature [9, 10]. The Brownian motion is exploited to model the friction and collisions arising
from solvent molecules and side branches in gels. The motion of a probe molecule is therefore
given by

ζ
∂ R

∂ t
(t) = −k R(t) + f (t) (1)

where R(t) is the instantaneous location of the probe; k is the strength of the harmonic
potential; ζ is the frictional coefficient of the probe molecule; f (t) are the random forces
satisfying 〈 fα(t) fβ(t ′)〉 = 2δαβζ kBT δ(t − t ′), where α, β = x, y, z. Since the mass of a latex
colloid is large, the inertial term is neglected [9, 10]. With some algebra, the mean squared
displacement (MSD) can be formulated as follows.

〈(R(t) − R(0))2〉 = 6kBT

k

[
1 − exp

(
−kt

ζ

)]
. (2)

At the short time limit (t → 0),

〈(R(t) − R(0))2〉 = 6kBT

ζ
t, (3)

suggesting that the MSD should be independent of external fields. For t � 1, 〈(R(t) −
R(0))2〉 = 6kBT/k. Actually, equation (2) is equivalent to the model in which a mean cavity
is utilized to represent all possible cavities in a gel [11].

In the above model, the harmonic potential is chosen to mimic the effective potential
experienced by the probe molecule confined to a cavity. First, in the experimental design, the
like-charged colloid particles are introduced to avoid their physical adsorption on the polymer
gel. The harmonic potential used in this work is repulsive, and is a simple model to depict
the repulsion between a colloid particle and the like-charged gel. Since the gel and colloidal
particles investigated in the experiment are both ionic, some water molecules may be tightly
bound to the charged groups in the gel. These adsorbed water molecules can be viewed as small
springs, and the force constant of the harmonic potential becomes the effective spring constant
of these smaller springs. Moreover, the harmonic potential is a simplified representation for the
local elasticity inside a gel. Actually, the harmonic potential accounts for various fundamental
interactions between the probe particle and the polymer gel.

2.2. Size distribution of cavities in gels

Due to the inhomogeneous nature of gelling materials, different types of (effective) cavity may
randomly distribute in a gel. Note that the cavity size in this work is referred to the effective
dimension in a cavity within which the probe molecule is allowed to move. The colloidal
particles chosen in the experiment by Nisato and co-workers probe those cavities close to or
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greater than the size of the probe molecule. In our model, each type of cavity is characterized
by a harmonic potential of strength k. By assuming that the cavities in gels are uncorrelated, the
measured mean squared displacement is obtained from averaging over the distribution function
of different cavity sizes P(k), given by

〈(R(t) − R(0))2〉e =
∫ kmax

kmin

dk P(k)〈(R(t) − R(0))2〉. (4)

This equation incorporates multiple cavities, which is beyond the empirical correction for the
disorder environment of a gel [2].

Since the probability distribution of different types of cavity, P(k), is unknown, several
distribution functions are considered, including the following.

(A) Uniform distribution

P(k) = H (k − a)H (b − k)/(b − a) (5)

where H (k − x) is the Heaviside step function; a and b equal kmin and kmax, respectively (the
range of k). In the calculations, the variables a and b are two adjustable parameters. In addition
to the uniform distribution, the following three functions ((B)–(D)) are chosen to test the shape
effect of distribution functions.

(B) Gaussian distribution

P(k) = exp [−b2(k − a)2]∫ kmax

kmin
dk exp [−b2(k − a)2] (6)

where a and b are adjustable parameters; k varies from kmin = 0 to kmax = ∞. The statistical
weight decays when k shifts away from a. Basically, the cavities of larger k are screened out
more in this distribution function, particularly for smaller a.

(C) Inverse uniform distribution

P(k) = 1

k2

H (k − 1/a)H (1/b − k)ab

(a − b)
. (7)

The inverse uniform distribution is used to transform the variable k in the uniform distribution
function into 1/k.

(D) Inverse Gaussian distribution

P(k) = exp [−b2( 1
k − a)2]∫ kmax

kmin
dk exp [−b2( 1

k − a)2] (8)

where a and b are adjustable parameters; k varies from kmin = 0 to kmax = ∞. As in inverse
uniform distribution, the inverse Gaussian distribution transforms k used in the Gaussian
function into 1/k.

(E) Exponential decay function
In contrast to the above distribution functions, we also consider an adjustable exponential

decay function.

P(k) = m exp (−mk)

exp (−mkmin) − exp (−mkmax)
(9)

where m is an adjustable parameter relevant to the width of the exponential decay function.
The exponential decay function is selected to reduce the statistical weight of cavities of larger
k, as opposed to the distribution functions in equations (7), (8).

(F) Bimodal distribution function
The distribution functions (A)–(E) consist of only one maximum (single modal) in the

range of our interest. Actually, several experimental works have shown that the gel interior
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Figure 1. Plot of the measured and the
calculated MSD based on equation (2),
denoted by symbols and lines, respectively,
for different cross-linking ratios Rc, as
marked; the experimental data are extracted
from [2].

consists of two types of cavity [3–5]. Likewise, the two types of cavity may display a
bimodal distribution due to size fluctuation. To test the possibility of the formation of bimodal
distribution in gels, a simple distribution function is investigated. In the model, the two peaks
of a bimodal distribution function are considered to be two uniform distribution functions with
the same width: one ranges from k = k0 to k1 and the other ranges from k = k2 to k2 + k1 − k0.
Moreover, a probability parameter, p, is incorporated into the distribution function to adjust the
statistical weight of the two peaks, which reads

P(k) = 1

(k1 − k0)
{(1 − p)H (k − k0)H (k1 − k)

+ (p)H (k − k2)H [(k2 + k1 − k0) − k]}. (10)

In spite of its simplicity, this distribution function is useful for dividing the possible cavities
into two distinct groups: smaller and greater k.

3. Results and discussion

3.1. Single mean cavity

We first study the case in which all types of cavity in the gel can be represented by one
single cavity, i.e., a mean effective cavity. In the calculations, we apply equation (3) to fit
the measured MSD at the shortest time (t = 4 × 10−4 ms) from the experiment by Nisato
and co-workers [2]. The procedure is to determine the frictional coefficient ζ for each cross-
linking ratio Rc, in the hope that the timescale at this point is short enough to approach the
short time limit of MSD. With this ζ , equation (2) consists of only one adjustable parameter
k (i.e., mean effective cavity), and is applied to fit the measured MSD at the longest time in
the experiment (about 800 ms) for a given cross-linking ratio Rc. The calculated ζ and the
fitted k for different Rc are summarized in table 1. Figure 1 compares the measured and the
calculated MSD based on equation (2), denoted by symbols and lines, respectively, for different
Rc, as marked. Equation (2) predicts a plateau, consistent with the experimental observation.
However, the model deviates from the experiment appreciably in the intermediate timescale
before reaching the plateau [2]. The deviation may be attributed to the fact that gels consist of
multiple types of cavity, other than one single type.
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Figure 2. Plot of the best fit of the average
MSD predicted by different distribution
functions from equation (5) to (8), and
experimental data, denoted by symbols, for
the cross-linking ratio Rc = 5 × 10−3.

Table 1. Fitted parameters from the model based on equation (2) for different cross-linking ratios
Rc.

Rc ζ/kBT (s nm−2) k/kBT (nm−2)

2 × 10−3 4.00 × 10−3 0.003 66
5 × 10−3 1.72 × 10−3 0.031 7
1 × 10−2 1.46 × 10−3 0.183

Table 2. Fitted parameters from the trial distribution functions for cross-linking ratio Rc =
5 × 10−3.

Distribution function a/kBT (nm−2) b/kBT (nm−2) ζ/kBT

Uniform 1.0 × 10−7 0.430 1.72 × 10−3

Gaussian 0.147 11.7 3.04 × 10−3

Inverse uniform 5.22 × 10−20 1.25 × 10−4 4.18 × 10−3

Inverse Gaussian 14.2 2.5 × 1020 5.03 × 10−3

3.2. Comparison of size distribution functions

To incorporate multiple cavities into the model, an appropriate distribution function is needed
to account for the statistical weight of different cavity sizes in a gel. Since the best choice of
distribution function is unknown, it would be instructive to examine a few possible functions.
Here, we test a series of distribution functions summarized in (equations (5)–(8)). Equation (5)
treats various cavities as a uniform distribution function, whereas equation (6) is a Gaussian
function with a maximum at finite k. The other two distribution functions in equations (7)
and (8) tend to have a larger statistical weight for greater k.

For a given distribution function, equation (4) is then applied to compute the average
MSD (by averaging over the distribution function). In addition to the adjustable parameters
in the distribution functions (equations (5)–(8)), the frictional coefficient ζ is treated as a fitting
parameter as well (only in this section). Figure 2 compares the best fit of the average MSD
predicted by using different distribution functions, as marked, with experimental data, denoted
by symbols, for the cross-linking ratio Rc = 5 × 10−3. The fitting parameters are summarized
in table 2. We find that the uniform distribution function (equation (5)) results in the best fit
compared to the experimental data. In contrast to uniform distribution function, the Gaussian
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distribution fails to fit the data because the statistical weight decreases continuously towards
smaller and larger k from the central peak of the distribution function. Meanwhile, the results
of both inverse uniform and inverse Gaussian distribution functions are quite similar. Both
show poor agreement compared to the experimental data, and their plateau values are much
smaller than the experimental results. Actually, both distribution functions overestimate the
contribution arising from large k. These results suggest that to better fit the experimental data,
the shape of the distribution function is crucial, and the distribution function is required to cover
a wide range of k, including k close to zero.

3.3. Uniform distribution function

The above comparison for various distribution functions suggests that the uniform distribution
function in equation (5) is a reasonable choice to quantify the experimental data. In this section,
we focus on the calculations based on this distribution function, equation (5). This model
assumes that the strength of harmonic potential k is evenly distributed in the range between
kmin and kmax (lower bound and upper bound of k). The mean MSD, 〈(R(t) − R(0))2〉e, is
calculated by averaging over the range of field strengths, given by

〈(R(t) − R(0))2〉e

= 6kBT

(kmax − kmin)

∫ kmax

kmin

dk
1

k

[
1 − exp

(
−kt

ζ

)]

= 6kBT

(kmax − kmin)
[ln (kmax/kmin) + E1(kmaxt/ζ ) − E1(kmint/ζ )] (11)

where E1 is the exponential integral. In the above equation, the two asymptotic expressions
for long and short timescales are given as follows. For t � 1, 〈(R(t) − R(0))2〉e =
6kBT ln (kmax/kmin)/(kmax −kmin), and for t � 1, 〈(R(t)− R(0))2〉e is reduced to equation (3).
To this end, the investigated model involves three adjustable variables: ζ , kmin and kmax. Among
these variables, ζ can be determined from the short-time dynamics because MSD becomes
independent of field strength as t → 0, as shown in equation (3). Note that the fitted frictional
coefficients in table 2 are quite close to those in table 1. In the rest of this paper, the frictional
coefficients are fixed and are selected from table 1. With the fixed frictional coefficient, the
adjustable parameters are now reduced to the range of field strength k, i.e., kmin and kmax.
This modified model, with multiple cavities incorporated, undertakes the analysis beyond the
empirical correction for the disorder environment of a gel, as seen in the literature [2].

The agreement between theory and experiment is improved by using equation (11).
Figure 3 is the same as figure 1 except that equation (11) is used for the theoretical calculation.
Table 3 summarizes the fitted kmin and kmax. As in figure 1, the MSD first increases and then
reaches a plateau when time is increased, indicating that the particle cannot drift away from a
confined boundary (i.e., a cavity). The plateau value is close to 6kBT ln (kmax/kmin)/(kmax −
kmin), the long time limit of equation (11). For larger Rc, the MSD reaches plateau at a shorter
time, and the value of plateau becomes smaller. In table 1, we find that as Rc is increased, the
fitted ζ decreases. Furthermore, in table 2, kmax and kmin shift toward larger values, and the
range of k becomes narrower for lager Rc. As a matter of fact, the fitted kmin and kmax enable us
to evaluate the range of effective cavity sizes. The corresponding MSD for kmin and kmax allow
us to estimate the range of effective cavity sizes, by summing up the minimum (or maximum)
dimension estimated from MSD and the physical size of probe particles (around 85 nm). The
estimations are summarized in table 3, and the findings show that for larger Rc, the range of
effective cavity sizes becomes narrower.
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Table 3. Fitted parameters from the model based on equation (11) for different cross-linking
ratios Rc.

Rc kmin/kBT (nm−2) kmax/kBT (nm−2) Range of cavity sizes (nm)

2 × 10−3 ≈0 0.0820 ∼90–(�90)

5 × 10−3 8.48 × 10−6 0.718 90–930
1 × 10−2 1.27 × 10−3 3.12 90–150

The above results can be further understood as follows. For the greater cross-linking
ratio Rc, more polymer chains in the gel are linked chemically, and the amounts of dangling
branches decrease. When the number of links is increased, the size of cavities decreases, and
the rigidity of the interior cavities of a gel increases. The shift of the plateau of the MSD
towards a shorter timescale and a smaller value in figures 1 and 2 for the greater Rc arises
from the more pronounced confinement effect within a smaller cavity. Moreover, as pointed
out by Nisato et al [2], dangling branches may have a substantial contribution to the frictional
forces experienced by the probe molecule, and a decrease of dangling branches would reduce
the frictional coefficient.

3.4. Exponential decay functions

To further test the size distribution of cavities, we carry out the calculations by using the
exponential decay function in equation (9). Such a function approaches the uniform distribution
function when m becomes very small, and enables us to attenuate the statistical weight of
larger k (or smaller cavities) in the distribution function as the parameter m is increased. This
distribution function emphasizes on smaller k, as opposed to the inverse uniform and inverse
Gaussian functions in equations (7) and (8) with a greater statistical weight for larger k.

Figure 4 plots the best fit of the MSD for Rc = 0.002, obtained from the exponential decay
function with m = 14 and 0.01. To obtain the best fit, kmin needs to be set to zero regardless
of our choice of m. For smaller m, such as m = 0.01, the best fit of the MSD calculated
from the exponential decay function and from the uniform distribution function is essentially
the same. As m is increased to 14, the fitting is not very different from that for m = 0.01.
However, it is noticeable that for larger m (m > 14), the exponential decay function fails to fit
the experimental data. The calculated MSD with larger m at the longest experimental timescale
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Figure 4. Plot of the best fit of the MSD
of Rc = 0.002 using the exponential decay
function for m = 14 and 0.01.

is much greater than that of the experimental measurement. The poor agreement for m greater
than 14 is because large enough k in the distribution function are screened out. This result also
suggests that probe molecules reside in both smaller (with greater k) and larger (with smaller
k) cavities of a gel.

3.5. Bimodal against single modal distribution

Despite the fact that the uniform distribution improves the fitting of experimental data, a small
discrepancy remains between theory and experiment, and the discrepancy is enhanced as the
cross-linking ratio Rc is decreased in figure 3. The discrepancy may imply that a different
type of distribution function is needed. To improve the small deviation in fitting, we resort to
equation (10), consisting of two peaks in the bimodal distribution function, and each peak is
composed of a uniform distribution function. The average MSD takes the following form:

〈(R(t) − R(0))2〉e

= 6kBT

{
1 − p

k1 − k0

[
ln

(
k1

k0

)
+ E1

(
k1t

ζ

)

− E1

(
k0t

ζ

)]
+ p

k1 − k0

[
ln

(
k2 + k1 − k0

k2

)

+ E1

(
(k2 + k1 − k0)t

ζ

)
− E1

(
k2t

ζ

)]}
. (12)

In the calculations, we choose k0 → 0 (because the best fit is obtained by letting k0 → 0 for
Rc = 0.002 from our test). Note that the fitting requires two parameters: k1 and k2. In figure 5,
we plot the best fit of the MSD for Rc = 0.002, and for p = 0.5, 0.67, 0.8 and 0.9, as marked,
by using equation (12). For comparison, the best fit resulting from the uniform distribution is
also plotted as a dotted–dash line. The fitted parameters are summarized in table 4. Generally,
the agreement between the theory and experiment is enhanced as p is increased. Actually, in
the experiment, the data of Rc = 0.002 were determined by using two different experimental
methods, due to two distinct timescales. The experimental data are not available in the region
roughly around t = 0.1 ms. As a result, an accurate fitting is impeded. From inspection, we
may argue that p = 0.8 yields the best fit compared to the experiment even though its error is
slightly larger than that of p = 0.9 in the calculations. This argument is based on the fact that
the theoretical curve of p = 0.8 evenly pass through all the data points, whereas a significant
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Figure 5. Comparison of the calculated MSD for p = 0.5, 0.67, 0.7 and 0.9 by using a
bimodal distribution, as marked, and uniform distribution (dotted–dash line) with experimental data
(symbols) for Rc = 0.002.

Table 4. Fitted parameters from the model based on equation (11) for cross-linking ratio
Rc = 0.002 and k0 = 0.

p k1/kBT (nm−2) k2/kBT (nm−2)

0.5 3.71 × 10−2 5.70
0.67 2.34 × 10−2 0.689
0.8 1.30 × 10−2 0.401
0.9 5.63 × 10−3 0.221

deviation is observed in the curve of p = 0.9 at around t = 0.2 ms. Since k1 is quite small
and is close to zero, one may speculate that some of probe molecules remain outside the gel or
stay in large enough cavities of which the environments are similar to the bulk solution (outside
the gel).

Moreover, figure 5 shows that the single modal uniform distribution function tends to
overestimate the MSD perceptibly, at an intermediate timescale, about t = 0.01–10 ms. In
contrast, the bimodal distribution function can be utilized to adjust the calculated curve in this
region. Compared to the result fitted with the uniform distribution function (dotted–dash line),
the bimodal distribution is in better agreement with experiment.

Although the width of the two peaks is chosen to be the same in the calculations, the
average MSD in equation (12), indeed, can be generalized as follows.

〈(R(t) − R(0))2〉e

= 6kBT

{
wA(1 − p)

wA(k1 − k0)

[
ln

(
wAk1

wAk0

)
+ E1

(
wAk1t

wAζ

)

− E1

(
wAk0t

wAζ

)]
+ wB p

wB(k1 − k0)

[
ln

(
wB(k2 + k1 − k0)

wBk2

)

+ E1

(
wB(k2 + k1 − k0)t

wBζ

)
− E1

(
wBk2t

wBζ

)]}
(13)

where wA and wB are scaling factors to adjust the widths of the two peaks in the bimodal
distribution, which are under the constraint wA(1 − p) + wB p = 1. In other words,



Modelling of the inhomogeneous interior of polymer gels 3559

1

10

100

0.001 0.01 0.1 1 10 100 1000

M
S

D

t (sec)

p=0.9

p=0.7

p=0.5

Figure 6. Comparison of the calculated MSD for p = 0.5, 0.7 and 0.9 by using a bimodal
distribution, as marked, and a uniform distribution (dotted–dash line) with experimental data
(symbols) for Rc = 0.005.

Table 5. Fitted parameters from the model based on equation (11) for cross-linking ratio
Rc = 0.005 and k0 = 0.

p k1/kBT (nm−2) k2/kBT (nm−2)

0.5 0.351 7.63
0.7 0.204 1.91
0.9 6.47 × 10−2 0.621

equation (10) can be viewed as a model consisting of two classes of cavity, corresponding
to the two peaks in the bimodal distribution. These two classes of cavity have distinct
environments, including different frictional coefficients (wAζ and wBζ ) and different peak
widths (wA(k1 − k0) and wB(k1 − k0)). Namely, equation (13) suggests that multiple distinct
cavities are present in the inhomogeneous interior of a gel. On the other hand, this equation
casts some uncertainty regarding how to determine the true distribution function because the
parameters in equation (13) yield multiple solutions from the limited experimental data.

In addition to the fitting for Rc = 0.002, equation (12) is further extended to fit the MSD
data for Rc = 0.005. Figure 6 compares the calculated MSD for p = 0.5, 0.7 and 0.9 by
using a bimodal distribution, as marked, and a single modal uniform distribution (dotted–dash
line) with experimental data (symbols). The fitted parameters are summarized in table 5. We
find that the single modal uniform distribution function displays a greater discrepancy for a
timescale roughly less than 1 ms. However, the agreement between theory and experiment is
enhanced when a bimodal distribution is applied. Among different p, the best fit occurs at
around p = 0.7. Also, tables 4 and 5 imply that as the cross-linking ratio Rc is increased, the
size range of each class of cavity tends to decrease (k1 and k2 in a similar order of magnitude
for greater Rc), and the number of cavities with greater k increases.

When Rc is increased to 0.01, the gel undergoes even more cross-linking, and the
distribution of cavity sizes exhibits different behaviour. Figure 7 compares the calculated MSD
for p = 0.5, 0.67 and 0.8 obtained from the bimodal distribution, as marked, and from the
single modal uniform distribution (dotted–dash line) with the experimental data (symbols).
Like figures 5 and 6, we first choose k0 = 0 in the bimodal distribution function. When the
bimodal distribution is applied, the optimal fitting leads to the result of k1 = k2 (as in table 6),
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Figure 7. Comparison of the calculated MSD for p = 0.5, 0.67 and 0.8 by using a bimodal
distribution, as marked, and a uniform distribution (dotted–dash line) with experimental data
(symbols) for Rc = 0.01.

Table 6. Fitted parameters from the model based on equation (11) for cross-linking ratio Rc = 0.01
and k0 = 0.

p k1/kBT (nm−2) k2/kBT (nm−2)

0.5 2.22 2.22
0.67 1.53 1.53
0.8 0.994 0.994

and such a result is independent of our choice of p. Nevertheless, the discrepancy remains large
between theory and experiment as long as a bimodal distribution function is utilized. Actually,
the best fit to the experimental data is obtained by using a uniform distribution function along
with a finite kmin as discussed in section 3.3. These results indicate that for larger Rc, the
cavities of smaller k (larger cavities) diminish, and the two distinct classes of cavity may merge
into one class. Together with the size range estimated in table 1, we may argue that for large
Rc, the gel undergoes more cross-linking. As a result, the cavities inside a gel are smaller, and
their sizes become more uniform. This result is not inconsistent with the conclusion drawn by
Ngai and co-workers because the random distribution of these smaller cavities may enhance
the scattering signal of gels as long as their spatial distribution is non-uniform [2].

Equations (11) and (12) represent the average MSD over the single modal and bimodal
distribution, respectively. The curves shown in figures 5, 6 are calculated by using two
parameters. Without changing the number of fitting parameters, we find that the best fit
for different Rc is governed by the form of distribution function. In other words, the size
distribution of cavities is an important factor to elucidate the inhomogeneous interior of gels.
As for the shape of the bimodal distribution, a separate study has been conducted to examine a
different bimodal distribution function, and the results are summarized in the appendix.

The bimodal distribution may have a physical implication analogous to two coexistent
physical states. For smaller cross-linking ratios (e.g., Rc = 0.002 and 0.005), the gel interior
is composed of two physical states (smaller and larger k). However, for larger cross-linking
ratios (e.g., Rc = 0.01), the single modal distribution indicates that the gel interior makes a
transition to a single physical state (composed of larger k). In addition to the argument based
on a thermodynamic phase transition, the single modal size distribution can be understood in
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a different way, i.e., the probe molecules chosen in the experiment reside only in the cavities
equal to or greater than the probe size. Namely, those cavities smaller than the probe molecules
are not sampled. In our view, these speculations can be further tested experimentally. In the
former case, the gels may change their physical characteristics more significantly under phase
transition. In the latter case, the smaller cavities of greater cross-linking ratios may be detected
through smaller probe molecules.

4. Conclusions

We have investigated a simple model to elucidate the dynamics of probe molecules in cross-
linked polymer gels. In these models, we assume that probe molecules are confined to the
cavities within the gel as single Brownian particles subjected to a harmonic potential (with
strength k). The harmonic potential is chosen to model the effective potential experienced by
a probe molecule in a gel. To obtain the best fit, we need to select an appropriate distribution
function to account for the effective size of all types of cavity within which probe molecules
are confined. Also, an additional assumption in these calculations is that the cavities are
uncorrelated in the gel. Hence, the mean squared displacement (MSD) is calculated by
averaging over the distribution of all types of cavity. We first find that the calculated MSDs
are sensitive to the shape of the distribution function. Distribution functions consisting of a
range of cavities, including smaller (larger k) and larger (smaller k) cavities, are the most
appropriate choices. To better understand the experimental data, we find that the distribution
function for low cross-linked and high cross-linked gels should be different. For low cross-
linked gels, a bimodal distribution function is required, indicating that at least two classes of
cavity are present in the gel. Such a result is consistent with the experimental observation for
polymer gels and silica-containing gels. For high cross-linked gel, the single-modal uniform
distribution function is sufficient to fit the experimental data. The caveat is that the distribution
function should range between two finite values of k, without k = 0 involved. Namely, the
probe molecules reside in a certain range of cavities. Furthermore, it is noticeable that for
the gels of larger cross-linking ratios, the cavity sizes become smaller and more uniform.
The transformation between single modal (one state) and bimodal distribution (two states)
for different cross-linking ratios may have an implication of phase transition. An alternative
explanation is that the probe molecule chosen in the experiment may be too large to explore the
smaller cavities for the gels of higher cross-linking ratios. The correlation between cavities
is not attainable from this work. Nevertheless, a further experiment can be attempted by
monitoring the correlation function between probe molecules.
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Appendix. An alternative function for bimodal distribution

The fitting reported in this work is sensitive to the shape of the distribution function. We have
tested an alternative to model the bimodal distribution, which is given by

P(k) =
1 + cos

(
2π k

kmax
+ φ

)

(kmax − kmin) + kmax
2π

[
sin (φ) − sin

(
2πkmin

kmax
+ φ

)] (A.1)



3562 C-Y Shew and T Iwaki

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

M
S

D

t (ms)

0 0.2 0.4 0.6 0.8 1
k/kmax

1+
co

s[
2ππ

(k
/k

m
ax

)+
φ]

0

0.5

1

1.5

2

Figure A.1. Comparison of the best fit obtained from equations (10), denoted by the dotted line,
and (A.1), denoted by the solid line; the inset displays the fitted distribution function multiplied by
the normalization constant.

where φ is an adjustable parameter to vary the phase of the cosine function. By shifting φ, the
position and the statistical weight of the two peaks of the bimodal function can be changed.
In the calculations, we first let kmin = 0, and select two fitting parameters: kmax and φ, as in
equation (10). In figure A.1, we compare the best fit obtained from equations (10), denoted by
the dotted line, and (A.1), denoted by the solid line; the inset displays the distribution function
multiplied by the normalization constant. The best fit is obtained when kmax = 0.0796 and
φ = 0.429. The distribution show the bimodal feature, with one maximum near 0 and the
other near 0.9π . We find that the cosine function lacks the flexibility to adjust the calculated
MSD near the time range t = 0.01–1 ms. Hence, the agreement with the experimental data
for equation (A.1) is not as good as equation (10) based on the bimodal uniform distribution
function. Nevertheless, this calculation shows the influence of the shape of the distribution
function on the theoretical fitting.

References

[1] Siegel R A 2004 Fundamentals and Applications of Polymer Gels (New York: Wiley–VCH)
[2] Nisato G, Hebraud P, Munch J-P and Candau S J 2000 Phys. Rev. E 61 2879
[3] Yamane Y, Matsui M, Kimura H, Kuroki S and Ando I 2003 Macromolecules 36 5655
[4] Rao K S and Das B 1970 J. Colloid Interface Sci. 32 24
[5] Ivanova I I, Aiello R, Nagy J B, Crea F, Derouane E G, Dumont N, Nastro A, Subotic B and Testa F 1994

Micropor. Mater. 3 245
[6] Ngai T and Wu C 2003 Macromolecules 36 848
[7] Ngai T, Wu C and Chen Y 2004 J. Phys. Chem. B 108 5532
[8] Wu C 2005 personal communication (Chinese Hong Kong University)
[9] Wenczel R and Shew C-Y 2002 J. Chem. Phys. 116 9537

[10] Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Oxford University Press)
[11] Pusey P N and Van Megen W 1989 Physica A 157 705

http://dx.doi.org/10.1103/PhysRevE.61.2879
http://dx.doi.org/10.1021/ma030163i
http://dx.doi.org/10.1016/0021-9797(70)90097-4
http://dx.doi.org/10.1016/0927-6513(94)00036-0
http://dx.doi.org/10.1021/ma021580i
http://dx.doi.org/10.1021/jp0309926
http://dx.doi.org/10.1063/1.1468217
http://dx.doi.org/10.1016/0378-4371(89)90063-0

	1. Introduction
	2. Model
	2.1. Brownian particles in harmonic potentials
	2.2. Size distribution of cavities in gels

	3. Results and discussion
	3.1. Single mean cavity
	3.2. Comparison of size distribution functions
	3.3. Uniform distribution function
	3.4. Exponential decay functions
	3.5. Bimodal against single modal distribution

	4. Conclusions
	Acknowledgments
	Appendix. An alternative function for bimodal distribution
	References

